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A gas in a tube is excited by a reciprocating piston operating at or near a resonant 
frequency. Damping is introduced into the system by two means: radiation of 
energy from one end of the tube and rate dependence of the gas. These define 
a lumped damping coefficient. It is shown that in the small rate limit the signal 
in the periodic state suffers negligible distortion in one travel time, and hence its 
propagation according to acoustic theory is valid. The shape of the signal is 
determined by a nonlinear ordinary differential equation. The small rate condi- 
tion provides a test of the applicability of the theory to given experimental 
conditions. When there is no damping, shocks are a feature of the flow for 
frequencies in the resonant band. For a given amount of damping an upper 
bound on the piston acceleration which ensures shockless motion is given. The 
resonant band is analysed for both damped and undamped cases. The predictions 
of the theory are compared with experiment. 

1. Introduction 
In this paper we discuss the periodic vibrations which result when a column of 

gas in a Kundt tube is driven by a piston oscillating at  or near a resonant fre- 
quency, The basic experimental observations are well documented (Saenger & 
Hudson 1960). Whenthe pistonfrequencyis in a band aboutaresonantfrequency, 
the amplitude of the response is markedly higher than the piston amplitude and 
shock waves appear in the flow. These phenomena have been extensively investi- 
gated in the recent literature (Betchov 1958; Saenger & Hudson 1960; Chu & 
Ying 1963; Chester 1964; Mortell 1971 a, b;  Collins 1971). Nevertheless, there are 
associated phenomena which need further investigation, and some aspects of the 
various analyses which need clarification. Two questions which are resolved 
concern the range of validity of the usual modifications of acoustic theory used 
previously, and the existence of a critical amount of damping which ensures 
a shockless motion. 

The basis for the analysis given here is the fact that the motion of the gas can 
be represented, to first order in the amplitudes, as the superposition of two non- 
interacting simple waves travelling in opposite directions (see Mortell & Varley 
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1970). This implies that the travel time of a component wave in the tube is deter- 
mined by its own amplitude, and then any distortion of a signal is self-induced. 
The essence of this approximation, which is the first term in a regular perturba- 
tion expansion, is that while the amplitudes remain small, Iu1 < a,, the accelera- 
tion lau/2tl in the gas is not restricted. (Here, u is the particle velocity and a, is 
the equilibrium sound speed.) This yields a linear representation for amplitudes, 
but a nonlinear representation for characteristics. A nonlinear theory such as this 
has been used for many years in gasdynamics for disturbances generated by the 
passage of a single progressing wave (see Whitham 1952). 

We consider the motion of a gas in a tube which is driven by a piston oscillating 
at one end. The other end is ‘partially open’ in the sense that it is allowed to 
radiate energy into the adjacent medium. We seek the time-periodic response of 
the gas to these boundary conditions. Using the simple-wave representation the 
problem of calculating the shape of the signal at a boundary is reduced to finding 
solutions of a nonlinear functional difference equation. The signal may be dis- 
torted as it travels, its shape at  any particle in the body of the gas being calculated 
from the simple-wave representation. In the ‘small rate’ or ‘ small acceleration’ 
limit l2u/atl < a;/L (where L is a typical length of the medium), the functional 
difference equation can be reduced to a nonlinear ordinary differential equation 
describing the shape of the signal in the periodic state. Further, in this limit, the 
distortion of the time-periodic signal in one travel time is negligible and propaga- 
tion according to linear acoustic theory is valid. All previous investigations of 
this problem have implicitly used the small rate approximation where the signal 
shape is determined by an ordinary differential equation. However, it is evident 
that, for a given maximum piston displacement E ,  the small rate limit restricts 
the allowed valucs of the applied frequency and hence the allowed resonant mode 
(given by n = 1,2,3,  .. .). For an applied amplitude E = 0-0147 (Sturtevant 1972, 
private communication) the restriction is that n < 2,  while for E = 0-0018 
(Saenger & Hudson 1960) it requires that n < 6. Thus the restriction implied by 
thc sinall rate limit is surprisingly strong. For larger amplitudes or higher 
resonant modes the functional difference equation must therefore be analysed 
without any approximations. This is done in a forthcoming paper. 

Thcre are two basic phenomena in the model used here: shocks due to non- 
linearity, and damping which can prevent shocks. When there is no damping 
present, linear theory predicts an unbounded amplitude in the periodic state for 
certain discrete (resonant) frequencies. On the other hand, nonlinear theory 
predicts a bounded signal, which contains shocks, in a band about the resonant 
frequencies. Since shocks act as a dissipative mechanism they allow a balance of 
energy. This role of nonlinearity seems to be well-understood. To date, the most 
comprehensive investigation of the effect of damping on resonant motions is due 
to Chester (1964). He investigated the effccts of compressive viscosity and 
boundary-layer friction on the motion. 

In the theoretical analysis given. here, damping is introduced into the system 
by allowing energy to radiate from the end of the tube, and through the rate 
dependence of the gas. We then show that damping introduced in this manner 
can prevent the occurrence of shocks in the flow; i.e. for a given piston motion 
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there is a critical level of damping above which the gas motion is continuous. 
(This does not answer the question raised by Chester (1964) specifically con- 
cerning the existence of a critical amount of boundary-layer damping.) There is 
experimental evidence to support the prediction. B. Sturtevant, at  the California 
Institute of Technology, has carried out experiments in which a hole is made in 
the closed end of the tube. He found that for the particular conditions of an 
experiment there is a critical ratio of the area of the hole to the area of the tube 
end at which shocks disappear. 

In  5 3 there is a complete analysis of the resonant band for both the damped 
and undamped cases for a quite general periodic forcing function h. Previous 
investigations have considered only the case when 2i was a pure harmonic. The 
results are obtained by an examination of the integral curves of the governing 
differential equation, using a condition on the mean flow to fix the shock position. 
For the undamped case explicit analytical results are given for the shape of the 
resulting signal, the edge of the resonant band, the position of a shock and the 
shock strength. For the damped motion, qualitative results are found analyti- 
cally, while quantitative results are found numerically. In  $ 5  there is a com- 
parison between theory and experiment. The introduction of damping improves 
the agreement and provides an adequate description of such gross features of the 
flow as the maximum or minimum pressure, or the shock strength. 

2. Formulation 
A column of gas, of length L in some reference (equilibrium) state, is contained 

in a pipe. One end of the pipe is closed while a t  the other end there is an oscillating 
piston. If pressure and density are measured from their values in the reference 
state (p,,,po) with the associated sound speed a,, then in terms of the non- 
dimensional variables aou,  poaop, and pop and Lx and Lai l t  the governing 
equations in Lagrangian form are 

and 

[(l+e)-l]t-uz = 0 

%+PZ = 0, 

where e ( = p - 1) is the condensation, y p  the excess pressure ratio and u the non- 
dimensional particle velocity. The equation of state of a polytropic gas in these 
variables is 

The end x = 0 is considered to be ‘near rigid’ in the sense that we allow for the 
possibility of radiation of energy through this end of the tube, but do not consider 
the case when it is open. A boundary condition of this nature has been discussed 
by Mortell & Varley (1970). Across the boundary at z = 0 both pressure and 
velocity are continuous, and so the disturbance must be compatible with the 
homogeneous boundary condition 

yp  = (1 + e ) r -  1. (2.3) 

u(0,t )  = -ip(O,t), (2.4) 

where i / y  ( 2 0) is the impedance of the interface. Here the essential assumption 
is that the disturbance outside the tube is generated by the passage of a simple 
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wave. Note that i = 0 corresponds to a rigid end and i = 00 to an open end. We 
examine the small amplitude, time-periodic response of the gas, governed by 
equations (2.1)-(2.3)) to the boundary condition (2.4) at x = 0 and a periodic 
piston displacement at  x = 1 of the form eh(mt). The amplitude of the displace- 
ment is e ( 4 1))  and the period of h is normalized so that h(y + 1) = h(y) .  Then the 
piston velocity at x = 1 is 

Since h is periodic, integration of (2.5) yields 

~ ( 1 ,  t) = EWh’(Wt) = H(wt) .  (2.5) 

Equations (2.1)-(2.3) are nonlinear and admit discontinuous solutions. How- 
ever, it has been shown by Mortell & Seymour (1972b) that for time-periodic 
motions, be they continuous or discontinuous, the mean pressure and velocity do 
not vary from particle to particle. By choosing as the reference pressure p ,  the 
constant mean of the periodic state, conditions (2.4) and (2.6) imply that the 
means of u and p are zero. The actual value of po can be determined only from an 
initial-value problem. 

2.1. Equation for the periodic motion 

A representation derived by Mortell & Varley (1970) is used to reduce the non- 
linear boundary-value problem defined by (2.1)-(2.5) to a nonlinear difference, 
or functional, equation. For a more restricted class of problems, this functional 
equation may be further reduced to a nonlinear ordinary differential equation 
which determines the shape of the periodic signal on one boundary. 

It is convenient to reformulate equations (2.1)-(2.3) in terms of the Riemann 
invariants and characteristic curves of the system. Upon dehing 

c(e)  = a(s) (1  +s)-lds = e [ l + g ( M -  l)e+O(e2)],  1: 
where 

and M = +(y + I), equations (2.1)-(2.3) define the Riemann invariants 

a2(e) = (1 + e ) 2  dp/de = 1 + 2Me + O(e)2  

2f(,8) = u - c  = u-p+0(e2)  (2.7) 

and -2g(a) = u+c = u+p+O(e2). (2.8) 

The associated characteristics are given by 

When only one component of the motion is excited, (2.7)-(2.9) admit two exact 
solutions, simple waves, which correspond t o  f = constant and g = constant. 
When both components of the motion are excited there is in general an inter- 
action between a waves, moving to the right, and p waves, moving to the left. 
However, it  has been shown by Mortell & Varley (1970) that to first order, in the 
limit of small amplitudes, the waves do not interact as they pass through each 
other in the body of the gas. By this is meant that to first order the trajectory of 
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an 01 wave is determined only by the signal it carries and is not influenced by the 
f i  waves through which it passes. Thus the motion of the gas may be represented 
as the superposition of two non-interacting simple waves. Then (2.7) and (2.8) 
imply that to first order 

e = P = -fW - g W  = f ( P )  -g(a) ,  (2.10) 

a / w = t - x - M x g ( a ) ,  B/w=t+x- l+M(x- l ) f (B) ,  (2.11) 

while (2.9) integrate to give 

where we have parametrized a and B by a = wt on x = 0 and B = wt on x = I. 
The representations (2.11) imply that different amplitudes have different speeds 
and hence different travel times in the tube. Thus an immediate consequence of 
the nonlinear theory is the existence of resonant frequency bands rather than 
discrete resonant frequencies. 

Upon using the boundary conditions (2.4) and (2.5), g is eliminated from 
(2.10) and (2.11) to yield the nonlinear functional difference equation to deter- 
mine the signal f on the boundary x = 1: 

(2.12) 

where 7 = s + 2~ + wM( I -t k ) f ( ~ ) .  (2.13) 

In (2.12) and (2.13), k = ( 1 - i ) / ( l + i )  is the reJlexion coeflcient a t  x = 0, where 
g is related to f by 

9($ + + W a f  ($)) = kf (#). (2.14) 

The governing differential equations (2.1)-(2.3) and the boundary conditions 
(2.4) and (2.5) have been reduced in the small amplitude limit to the functional 
difference equation (2.12) and (2.13). We now seek solutions to (2.12) and (2.13) 
which, like the piston motion, have unit period. Further, as a consequence of the 
representations (2.10) and (2.11), the boundary conditions (2.4) and (2.5) and 
the fact that u and p have zero mean over any period, f and g must satisfy 

/:f(s) ds = Io1g(s) ds = 0. (2.15) 

Since M is the ratio of second-order to  first-order elastic constants, linear theory 
is recovered from (2.12) and (2.13) by formally setting M = 0 to yield 

f(r) - kf(r - 2 w )  = H ( r ) *  (2.16) 

When k = 1 there are no solutions of (2.16) with unit period; that is, when 

w = w , = & n  (n= 1 ,2 ,3  ,... ). (2.17) 

These are the linear resonant frequencies. Ultimately we shall consider the time- 
periodic response of the system to frequencies near to those defined by (2.17) and 
consequently define 

o = w , ( l + 8 )  (IS] < l /n). (2.18) 
Then in terms of 

(2.19) RY) = f(Y) + 8lb7 
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where b = +M(l+k)(l+S) ( =  0(1)), (2.20) 

(2.12) and (2.13) become 
P ( r ) - k W  = G(r )  (2.21) 

and 7 = + n + nbP(s), (2.22) 

where G(7) = p8/b + H ( r ) ,  ,U = 1 - k.  (2.23) 

Definition (2.19) now implies that the zero-mean condition (2.15) onf is replaced 

/ l F ( s ) d s  = S/b.  (2.24) 

The approximations used to derive (2.21) and (2.22) are the small amplitude 
assumption I f ] ,  lgl < I and the fact that the impedance of the interface a t  x = 0 
is near zero, so that 0 < k 6 1. This latter assumption is required since whenever 
1 + k = O(e)  the next correction to the characteristics (at order e2) is no longer 
negligible. For example, if the end of the tube is open (k = - 1) the nonlinear 
approximation (2.11) to the characteristics leads to a linear difference equation 
which has no bounded periodic solution at a resonant frequency. Consequently, 
for a problem involdng an open end (or ‘nearly’ open) the approximations (2.11) 
for a and ,!I’ must be improved. In  fact, the approximations for a and /3 must con- 
tain terms inf2 and 92,  so that now the motion in the tube is determined by the 
cubic term in the equation of state, with a resulting amplitude of O(&) (see 
Collins 1971; Seymour & Mortelll972). Note further that the difference equation 
(2.21) and (2.22) together with (2.19) determine the shape of the signal functionf 
only on x = 1. The velocity u and pressure p are subsequently ealculaked at any 
particle x in the tube from the representations (2.10) and (2.11). This is particu- 
larly important when there is significant distortion of a wave in one travel time. 

by 

If we now make the additional small rate assumption 

InP‘I 1, 
(2.22) implies that  

F(s )  = F(7 - n) - nbF(7 - n) F’(7 - n) [I + O(nF’)]. (2.25) 

Upon using (2.25), and since we seek solutions with unit period, the difference 
equation (2.21) and (2.22) can then be approximated by the nonlinear ordinary 
differential equation 

(2.26) 
together with 

m?+1) = P(r]), (2.27) 

where v = nbk. The small rate condition and the definition of F give the further 
restriction IS1 < l/n. Thus (2.26) is valid in the small rate limit only for periodic 
motions at frequencies in the neighbourhood of linear resonant frequencies. In  
contrast to this, the difference equation (2.21), and (2.22), was derived with no 
restriction on the applied rates; it is valid for non-periodic phenomena (see 
Mortell & Varley 1970; Mortell & Seymour 1972a, b ) ,  and the applied frequency 
is not restricted to lie near a linear resonant frequency. 

m r )  F’(r)  +pF(7)  = G ( r )  (0 6 91 6 1)’ 
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Since the small amplitude restriction requires that [ f l  < 1, the small rate 
condition implies that the differential equation (2.26) is a good approximation 
to the difference equation only when n is at most of O( 1) as I f 1  -+ 0. In  addition, 
the representations (2.11) for the characteristics imply that in the small rate limit 
there will be no appreciable distortion of the wave form in one period, since 

where 0 lies between p and o(t +x- 1), and 0 < x < 1. (Of course there will be 
a cumulative distortion of the signal until the periodic motion has been set up. 
This is not described by (2.26).) Hence, in the small rate Zimit, (2.10) and (2.11) 
can be replaced by the linear acoustic representation 

- p  = f ( o [ t + x -  11) +g(o[t-x]), u =f (w[ t+x-  1 ] ) - g ( ~ [ t - ~ ] ) ,  (2.28) 

so that, when the periodic motion has evolved, nonlinearity is of primary import- 
ance in determining the shape of the signal functions, but it is of secondary 
importance in determining how the signals propagate. 

We point out that the small rate condition (nF’( < 1, which is necessary for 
the validity of both the differential equation (2.26) and the representation (2.28), 
is quite restrictive for usual experimental values of the parameters. The results 
of 3 3 show that fore = 0.0147, used by Sturtevant (private communication), this 
restriction implies n < 2; for E = 0.0018, used by Saenger & Hudson (1960), the 
restriction yields n < 6. In a sequel to this paper we shall examine periodic 
motions with no restrictions on the rates when some of the ideas introduced here 
are used to analyse the functional difference equation (2.12) and (2.13) directly. 

It may be of interest to note that equation (2.26) arises in other physical situa- 
tions. It is a generalization of the equation which describes the motion of a 
viscously damped pendulum under a constant external moment, and also occurs 
in the study of the pull-out torque of a synchronous motor, see Stoker (1950) or 
Minorsky(1962).Ifoneweretowritei=&,+ei2+ ... o r k =  l+s&,+ ..., then 
(2.26) could be derived using the regular perturbation scheme given in Mortell 
(1971 b) .  This latter derivation, unlike that given here, has an explicit assumption 
on the amount of damping present. The analysis of (2.26), under the restriction 
(2.24), and the physical interpretation of the results constitute the remainder of 
this paper. 

3. Determination of the periodic signal 
Here we analyse the integral curves of the differential equation (2.26) for 

various ranges of the parameters ,u and 6 and then use these to construct the 
signal P of the periodic motion. When we have constructed P over one period, 
possibly by a composition of integral curves, it is continued periodically by (2.27). 
The signal function F may then have discontinuities representing a time-periodic 
motion in the pipe containing shocks. The discontinuities in P arise in satisfying 
the mean condition (2.24). Acoustic theory allows discontinuities of either com- 
pression or rarefaction with no restriction on their strengths. However, to be 
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physically acceptable a jump in a gas must be compressive. Here we consider 
only piston velocities which have three zeros over one period, and then dis- 
continuous solutions of (2.26), which satisfy the mean condition (2.24), addi- 
tionally satisfy the appropriate weak-shock relations. This is not strictly 
necessary within the acoustic approximation. 

If S ( x )  is the arrival time at x of a weak shock travelling in the negative x direc- 
tion and are the wavelets immediately ahead of and behind the shock, then 
the weak-shock relations imply that 

a s p x  = - 1 - - ; “ f (P+)  +f(P-)l. (3.1) 

A similar relation gives the speed of shocks moving to the right. However, since 
in the periodic state there is negligible distortion, P* are independent of x and 
(3.1) can be integrated to give the travel time of a shock from x = 1 to IL’ = 0. 
The boundary condition (2.14) then implies that the total travel time for the 
shock to return to x = 1 is 

T = 2 + @f( 1 + k) [f(P+) +f(P-)]. 

f(P+) +f(P-) = - 2 w  

(3-2) 

(3.3) 

.F(p+) +F(P-) = 0. (3.4) 

Since the periodicity requirement is that T = n/w, equation (3.2) implies that 

On using (2.19), the definition of F ,  equation (3.3) becomes 

The condition that only compressive shocks are allowed then requires that 

On the other hand, integration of (2.26) over one period, assuming a discon- 
q p f )  > 0. 

tinuity at 7 = 8, yields 

Conditions (2.6), (2.23) and (2.24) then imply that (3.4) must hold at the discon- 
tinuity. Thus a solution of (2.26), containing a discontinuity, which satisfies the 
mean condition (2.24) and the restriction F(p+) > 0 will necessarily satisfy the 
weak-shock relations. Thus a shock is fitted into the solution by satisfying the 
mean condition. This analysis is for one shock per period of the piston, which 
gives n shocks in the tube at any time. 

3.1. Special case of no damping p = 0 

When the boundary at z = 0 is rigid and there is no radiation of energy through 
it, i = p = 0 and equation (2.26) is greatly simplified. It can then be integrated 
completely and the signal function, the width of the resonant band and the shock 
strength for these frequencies can be determined analytically in terms of the 
parameters of the problem. Further, the transition from a discontinuous motion 
inside the band to a continuous one outside is exhibited explicitly. 

We wish t o  distinguish between the integral curves of equation (2.26) and the 
signal F which must additionally satisfy the mean condition (2.24). An integral 
curve is denoted by Z(7). Notice that while P is defined only for 0 d 7 < I and 
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is then continued periodically, if F is continuous it must coincide with an integral 
curve Z which is both continuous and periodic for --co < 7 < co. Conversely, 
a continuous periodic integral curve 2 with unit period which satisfies the mean 
condition (2.24) is the required signal function P. When such an integral curve 
exists it is unique. When, for a particular frequency, no such curve exists, P is 
discontinuous and is composed of distinct integral curves. 

For the case ,u = 0, the appropriate differential equation is 

nbZ(7) Z'(7) = W'I). (3.6) 
There is no loss of generality in choosing the origin so that 

H ( 0 )  = H(p,) = H(1) = 0, 

where 0 < ql < 1, with H'(0)  = H'( 1) > 0 and W(yl) < 0. Then in the q,Z plane 
the points A ,  = (0 ,  0) ,  A ,  = ( 1 , O )  and B, = (ql, 0) are isolated singular points. 
A,  and A ,  are saddle points, while B, is a centre. Using (2.5), the integral curves 
which are defined for all 7 are given by 

Z*(% 6)  = * C(C/Jf) @('I) - 4 0 ) )  + C(6)14 (3.7) 
where C(6) = Z2(0 ,S ) .  These solutions are periodic, with unit period for all 7. 
The two separatices through A,, Z$(p), correspond to C(6) = 0 and these, by 
the periodicity of h, connect the saddle points A ,  and A,. 

Since Z$(p) > 0 for 0 < p < 1, any solution Z(7) with Z ( 0 )  > 0 is periodic in 7 
with Z(r) > Z$(y) and therefore Z satisfies 

Consequently the mean condition (2.24) implies that for an applied frequency 
w = 1% (1 + 6 )  such that 

6 > Jo12$(s) as (3.9) 

there exists a unique, continuous, periodic solution Z , ( r )  = Z+(p, 6). The positive 
constant C(6)is chosen so that Z,(q) satisfies the mean condition (2.24). A similar 
analysis shows there are also continuous periodic solutions 2 , ( p )  = Z-(q,  6) for 

For frequencies such that 

(3.10) 

no single integral curve will satisfy the mean condition (2.24) and the signal 
function will necessarily be discontinuous. The shock condition together with the 
fact that only compressive shocks are allowed then implies that the signal func- 
tion P can only be constructed from the separatices Z$(q)  with just one shock 
per period. The position of the shock at  p = p ,  is chosen to satisfy the mean 
condition, The signal function F is then given by 

(3.11) 
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The range of frequencies, defined by (3.10), for which the signal is discontinuous, 
is called the resonant band. If (3.10) is solved for 6 the resonant band is given 
explicitly by S- < 6 < 6+, where 

and 

-t. (EM)%( 1) 
1 T (sM)’JE( 1) 

6’ = 

K(q) = [h(s) - h(0)]4 as. so” 
(3.12) 

Notice that the amplitude of the response of the gas to an applied signal of O(E)  is 
of O ( E ~ )  and that the width of the resonant band 2(sM)%(l) [l - ~ N ~ ~ ( 1 ) ] - 1  is 
also of O ( C * ) ~  The position of the shock, q = rs, is given implicitly by 

h(q,) = &K( 1) + 6/2(€M)4(1+ S ) ,  
- 

(3.13) 

where the shock strength is 

Z,+(TS) - &(%) = 2(4M)+(h(rls) -h(O)F. (3.14) 

Onusing.(3.12)and(3.13),as6~6+,~,-tl,whileas6+6-,~,-,0.Thusby(3.14), 
as 6 + P ,  the shock strength tends to zero. The limiting solutions, when 6 = 6*, 
are given by P(q) = Z,$(q). Then the signal P is continuous but has a discontinuous 
slope a t  q = 0 , l .  The resonant band is not symmetrically situated about the 
linear resonant frequencies w = on, since IS+/ > 18-1, by (3.12). 

The above results are particularly simple for the important special forcing 
function h(7) = - cos Pry. The edges of the resonant band are 

6“ = & 2(2€M)4/[7T T 2(2eM)s]. 

cos (rvs) = - 4 2 (  1 + 6 )  (2EM)4 

The shock is located at qs, where 

and the shock strength is 2(2~/M)*sinnv~. Note that P’(ql) = 0 and thus when 
o = w,, vs = q1 = 4, i.e. the maximum pressure equals the pressure immediately 
ahead of the shock, and the pressure immediately behind the shock is the 
minimum pressure. 

3.2. p, < p < 1 

When p is non-zero the positions of the singular points in the 7, Z plane now 
depend on both ,u and 6, and B, is no longer a centre. We consider the variations 
in (p, 6 )  in two parts. Here we show that for a given forcing function H(q)  there 
is a critical amount of damping ,u = p, such that for p > ,uc the signal function is 
continuous for all frequencies. In 3 3.3 we fix p < p, and consider variations in 6 
which will define the resonant band. 

If we assume that the zeros of H ( q )  satisfy the conditions described in § 3.1, 
the singular points of the equation 

m r )  Z’(7 )  + P a r )  = w/), (3.15) 

where G(7) is defined by (2.23), are the points (Oi, 0), i = 0,1 ,2 ,  such that 
G(Oi) = 0. (The periodicity of H ensures that O2 = 8, + 1.) We label them A&, a), 
A,(llcu,6)andBl(llc,6),whereAo(llc,0) = (O,O),A&,O) = (1,0)andB,(,u,O) = (rl, 0). 
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FIGURE 1. Highly damped case ; linear theory a good approximation. 
6 = 0.0147, 6 = 0, i = 0.50. -, P(7);  ---, P,&) = G ( ~ ) / , u ;  -*-, Ct(7). 

Labelling them in this way is consistent with the notation of the previous section 
and ensures that A,  and A ,  are again saddle points. The separatices through Ai 
(which we denote by Z$(q)) have slopes 

A*(05) = (-p & [p2+ 4 ~ H ' ( 8 , ) ] 4 } / 2 ~ ,  (3.16) 

where A+(Oi) > 0 > A-(O,), since H'(8,) > 0,  for i = 0,2. The slopes at  B, are also 
given by (3.16), where H'(61) < 0. When I((?,) > 0, where 

= p2 + 4vH'(rl), (3.17) 

B, is a node, while if I((?,) c 0, B, is a focal point. Thus for a given forcing func- 
tion H (which is of O(B) )  B, will be a node if there is sufficient damping in the 
system. It may then be possible to construct a continuous solution passing 
through A,, B, and A, for any value of 6. Obviously the nodal condition 
I(0,) > 0 is necessary for the existence of such a solution, however it may not be 
sufficient. Since the distortion of the signal, and possible shock formation, 
depends on the amplitude of IT(?), one can expect the condition ensuring the 
existence of a continuous solution to depend on a global property of H'(7) .  In fact 

,u2 > p: = max [ - 4vH'(q)] > 0 (3.18) 

is a suflcient condition for the existence of a continuous periodic solution at all 
frequencies. The proof of this result is given in the appendix. Thus for ,u > pc, 
P(q) = Z,+(q), which is continuous and, by (3.5), satisfies the mean condition 
(2.24) (see figure 1). 

B 
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FIGURE 2. Construction of solution B' using integral curves Z$ and 2;. 
Shock is at q8. B = 0.0147, 6 = 0-07, i = 0.08. 

3.3. 0 < p < pc 

In  this case there is not enough damping to produce a shockless solution for all 
frequencies. Thus for 6 = 0 

Z,+(O,) > 0, Z,(O,) < 0, %(7,) = Zi(72) = 0, 

where 0 < v 2  < 0, < 7, < 1 (see figure 2). Hence the separatices do not connect 
the saddle points A, and A,. As S is increased through the resonant band, so that 

r i  

there exists a unique frequency, given by S = S+, such that Z$(r)  = Z,t(r), 
8, 6 7 < 02. That is, for 6 = S+, the positive separatrix connects the saddle 
points A ,  and A ,  (see figure 3). Further, for 6 > S+ there exists a unique, con- 
tinuous periodic solution Z = Z,(y) > 0, (see figure 4). Similarly there exists 
a 6 = S- < 0 for which 2; = 2, and such that when S < 6- there is a unique, 
continuous periodic solution Z = Z,(7) < 0. These results can be inferred from 
the results of Amerio (1949, 1950). Whereas for the case ,u = 0 explicit values 
have been given for S* (see equation (3.12)), when 0 < p < pc this is not possible. 
However, for a particular forcing function, S* can easily be found numerically 
by varying S until a solution is found such that 2$(0,) = 0 or Z;(O,) = 0. Since 
these limiting solutions are continuous they satisfy the mean condition (2.24) and 
hence we can give the implicit conditions for the edge of the band as 

There have been several attempts to obtain analytical bounds on a*. Hayes (1953) 
and Bohm (1953) found bounds for F, = - cos 2777 while Lillo & Seifert (1955) 
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FIGURE 4. F = 2, is continuous solution outside resonant band. 
e = 0.0147, 8 = 0.20, i = 0.08. 

used similar techniques to find bounds for a general forcing function. Further 
reference can be found in Sansone & Conti (1964). 

By equation (3.5) the unique continuous solutions Z,(~,I) automatically satisfy 
the mean condition (2.24) and hence, for 6 > 6f or 6 < 6-, 

P(r) = Z8(7), 8, G rl d 8,. 
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When 6- c 6 < S+ there are no continuous periodic solutions of (3.15). Again, 
as in the case p = 0, we construct the signal function F by a composition of 
integral curves (see figure 2). The discontinuous signal function F must satisfy 
both the mean condition (2.24) and the weak-shock condition (3.4). However, it 
has been shown that if the mean condition is satisfied the shock condition is 
automatically satisfied. The condition that a shock is compressive then implies 
that we choose 

(3.19) 

where y = vs is the position of the shock. It is shown in the appendix that it is 
always possible to choose an T~ to combine Z,+(y) and Z,(q) so that the mean 
condition (2.24) is satisfied. Hence F ,  as given by (3.19), is the required signal 
function. By (3.15), P' = 0 at 9 = qmax, qmin, where F = C/p. Then, in general, 
when w = w, the maximum pressure exceeds the pressure immediately ahead of 
the shock and the pressure immediately behind the shock exceeds thc minimum 
pressure. 

It is clear from the structure of the integral curves for the undamped ease that 
if the piston frequency is an even multiple of the fundamental, then a possible 
continuous solution is 

.* 

J y 9 )  = Z,+(T), 80 < 9 < 82, 

with P(9+ 1) = -wl), 
which is a 'subharmonic' solution. From the preceding analysis, this solution is 
unstable to perturbations in both damping and frequency. 

Finally we note that when Ic = 0 (p = 1) the impedances at x = Oare 'matched '. 
Then there is no reflected wave, so that by (2.14) g = 0. The differential equation 
(2.26), together with (2.19) and (2.23), then yields that, on x = I, 

f(7) = H ( 7 )  for all 9. 

4. Critical acceleration level 
In  the preceding we have analysed resonant oscillations when it is assumed 

that the only damping in the system is due to radiation of energy away from the 
end of the pipe. Here we show that, in the high frequency limit, the effect of 
damping due to internal dissipation can also be incorporated into equation 
(2.26). While these may not be the only damping mechanisms present, they can 
be dominant. Then we give a condition on the piston acceleration, in terms of the 
physical parameters, which ensures a shockless motion. 

It has been shown by Mortell & Seymour (1972a) that the representation 
(2.10) and (2.11) can be extended, in the high frequency limit, to include the 
effect of internal dissipation of the transmitting media (specifically, there, for 
a viscoelastic rod). For a gas such dissipation would result from the excitation of 
any of the internal degrees of freedom, e.g. vibrational excitation or molecular 
dissociation. If it  is assumed that only one rate-dependent process is of signifi- 
cance and that this can be represented by the relaxation variable a(x,t), then 
the rate of adjustment of G may be described by 

h / a t  = +(p, e, (TI. 
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II. will then define a rate parameter or relaxation time r ( >  0) proportional to 
$Jp0,  e,, c,). A periodic disturbance is considered of high frequency, or is near- 
frozen, if its period is small compared with r ,  so that L(U,W)-~  < r (note that in 
our variables L(a,w)-l represents the dimensional piston frequency). For such 
disturbances a, should now be interpreted as the frozen rather than equilibrium 
sound speed (more details of nonlinear wave propagation in a relaxing gas are 
given by Blythe (1969)). In  this limit, a disturbance in the gas can be represented 
as two non-interacting modulated simple waves travelling in opposite directions 
(see Mortell & Seymour 1972a; modulated simple waves in rate-dependent 
media are discussed in detail by Seymour & Varley 1970). The appropriate 
representation corresponding to equations (2.10) and (2.11) is then 

g(a) e-dz, u = f(p) ed@-1)- g(a) e-dx7 (4.1) 

(4.2) 

and (4.3) 

where cl = L/(a,r) << w. On eliminating g from (4.1)-(4.3) t8hrough the boundary 
conditions (2.4) and (2 .5 ) ,  the functional difference equation (2.12), and (2.13), is 
recovered with the parameters k and b replaced by 

e = p = - f(p) ed(z-1) - 

a /w  = t - x - Mg(a) d- I (  1 - e-&) 

p / w  = t + x - 1 + M f ( p )  d-l(ed("-l)- I), 

and 6, where 
- 

E = ke-zd, b = hN( I + 6 )  (1 -t ke-d) (1 - e-d) d-1. (4.4) 

In  the small rate limit, when w = O(l) ,  d << 1. Under these circumstances the 
procedure of § 2 then leads to the nonlinear ordinary differential equation ( 2 . 2 6 )  
with the parameters ,u and v replaced by ,E = 1 - &  and zi = n6E. The rate- 
independent case is recovered in the limit r + co when d + 0. The parameter & in 
(4.4) consists of two factors; the first, k, is the attenuation of the signal at the 
interface x = 0 due to transmission of energy into the neighbouring medium; the 
second, e--2d, is the attenuation of the signal over one cycle due to internal 
damping. While the latter acts continuously throughout the gas, whereas the 
former only acts a t  the interface, they enter (2 .26 )  in an identical manner. Thus 
the role of both in preventing shock formation is the same. 

Betchov (1958) modelled the effect of boundary-layer friction on the flow by 
introducing a body-force term in the momentum equation proportional to the 
fluid velocity. This idea goes back to Rayleigh (see Rayleigh 1945). This model 
of the friction has the same effect on the flow as rate dependence, and again 
enters (2.26) through p. 

Since A,(t) = wH'(wt) represents the acceleration of the piston, we can 
interpret condition (3.18) as follows: for a given amount of damping there is 
a critical acceleration level of the piston such that for applied accelerations 
below this the motion of the gas is shockless at all frequencies. By (3.18), for 
a known the gas motion is shockless provided that the piston acceleration 
satisfies 

(4.5) 

on using (2.17), (2.18) and (2 .20 ) .  In the limit as the damping tends to zero, 
L - + l  and p+O, which implies IA,(t)l + O  for a shockless motion. Thus when 
there is no damping present there is always a shock a t  resonance. 
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When i 4 1 and a < 1, then (4.5) reduces to 

as the condition for a shockless solution for a resonant forced motion. In contrast, 
for a transient or ‘standing wave’ motion in the same system the condition for 
a shockless motion is (see Mortell & Seymour 1972 a )  

I J w t ) l  < (it-a), (4.7) 

where A ( t )  here is the acceleration level defined by the initial conditions. The 
formation of a shock is determined by the induced acceleration level in the gas 
flow. For the shockless transient motion the applied and induced accelerations 
have the same order of magnitude. However, for the resonant forced motion, the 
induced acceleration has the same order of magnitude as the square root of the 
applied acceleration. With this observation the results (4.6) and (4.7) are in 
harmony. In  a theoretical study of resonant oscillations of a radiating gas, 
Eninger (1971) found, using numerical methods, that there was a critical value 
of the radiative parameter above which the motion remained shockless. 

When the resonant motion is shockless, linear theory is a uniformly good 
approximation to the nonlinear theory provided that the piston acceleration is 
sufficiently small (see figure 1). By setting v = 0 in (2.26), the linear solution is 
given by 

and hence, by (2.26), 
%(r) = W l ) / P  

By differentiating (2.26) and setting P”(y) = 0 we find that IB”(r)( Q A+(r),  
where A+(q) is given by (3.16). If now the applied acceleration is small, in the 

then 

< 1, by (4.8). 

The inequality (4.5) defines a critical acceleration level which provides a suffi- 
cient condition on the applied rate to ensure a response of the gas which is 
continuous. Numerical integration of the equations shows that shockless solu- 
tions exist for piston accelerations greater than the critical one, so that inequality 
(4.5) is conservative, as may be expected. 
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5. Comparison with experiments 
The theoretical predictions of the analysis presented are compared with some 

experimental measurements made by Sturtevant (private communication). His 
set up consists of a tube of length 132.5 in. with an inside diameter of 3.0 in. which 
contains air ( y  = 1.4). At one end of the tube is a piston which is displaced 
sinusoidally with an amplitude, normalized against the length of the tube, of 
0.0147. The experiments we are concerned with here have the two configurations 

(i) when the far end of the tube is closed; 
(ii) when the far end of the tube has a hole in it whose area is small compared 

with the area of the end. 
For case (i) we are concerned with measurements of the following quantities, a t  
the closed end, for values of the piston frequency around the fundamental: 

(a)  the absolute maximum and minimum of a normalized pressure wave form, 
(6) the pressure immediately before and after the shock jump. 

As a consequence of these readings the values of the frequency corresponding to 
the lower and upper ends of the resonant band are available. 

Figure 5 ( a )  shows the comparison between the undamped case (i = 0) and 
experimental ‘response curve ’ of Sturtevant. In this case, our theory is equivalent 
to that in 8 4 of Chester (1964). I n  computing the theoretical curves in figure 5 ( b )  
a value of i = (I  - h)/(  1 + f E )  (i = 0.08) is chosen so that the shock strength exactly 
a t  resonance (6 = 0) is equal t o  the observed strength. The theory predicts that, 
for 6 = 0, the pressure immediately before the shock is the negative of the 
pressure immediately afterwards, which is not the experimental result. Thus the 
theoretical and experimental curves do not coincide a t  6 = 0, even with our 
choice of h. We should also bear in mind that for the conditions of the experiment 
the small rate condition is only marginally satisfied (see the comment a t  the end 
of 9 2 ) .  The experiments show that a t  resonance the maximum pressure exceeds 
the pressure ahead of the shock and the pressure behind the shock exceeds the 
minimum pressure. This is not predicted by inviscid theory, but is a property of 
the solution of the equation with damping. Snother point to note is that the 
absolute maximum of the pressure occurs about 10 yo to the right of the resonant 
frequency, while the absolute minimum occurs about 5 yo to the left. 

An interesting point is that the amount of damping required to  correct the 
shock strength a t  6 = 0 has a negligible effect on the width of the resonant band. 
This might seem surprising since damping decreases the shock strength, which in 
turn determines the resonant band. The result can be understood, qualitatively, 
by considering equation (2.26) and bearing in mind the definition of G(7)  given 
by (2.23). When there is damping, ,u + 0, the system defined by (2.26) is being 
driven by the forcing function G whose mean is non-zero for 6 + 0. The increased 
damping is then counteracted by the increased amplitude of the effective 
driver G. 

For case (ii) it is observed that for particular experimental conditions there is 
a critical area ratio at which the shock in the tube disappears for all frequencies. 
If we interpret the presence of a small hole in the end of the tube as a means of 
introducing damping into the system then the prediction of the theory agrees 

24 FLM 58 
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FIGURE 5. Theoretical and experimental response curves. (a) No damping, i = 0. 
(b)  Damped case, i = 0.08. e = 0.0147, y = 1.4. Experiment: 0, maximum and minimum 
pressure; A, pressure before and after shock (due to Sturtevant). Theory: 0,  maximum 
and minimum pressure; x , pressure before and after shock. 

qualitatively with experiment. It cannot be expected that the impedance condi- 
tion (2.4), as introduced in the theory, will account for the detailed motion of the 
gas near the orifice. Nevertheless, it seems to be useful in predicting the gross 
features of the motion. 

Curves of shock strength S(i)  versus impedance i were plotted for various 
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FIGURE 6. Shock Bmplitude versus impedance for various piston amplitudes. 

values of the piston amplitude E .  Figure 6 shows that there is a linear relation 
between S(0)-S( i )  and i, which is independent of 6 for 0 < i < 0-2 when 
0.01 < e < 0-02. A corresponding plot of shock strength versus area ratio would 
give a measure of the effective impedance (or effective damping). The linear 
relationship indicates that shock strength is a good measure of damping. 

This result can be understood from a rough analysis of the energy balance. 
When i < I, the results of 5 3 indicate that if the amplitude of the piston is E ,  the 
amplitude of the response is of O(s*), while the shock strength S is of O(d) .  The 
balance between the input of energy due to the piston and the loss due to the 
shock and radiation from the end is 

A€$ = X3(i) -ti&, (5-1) 

where A and B are constants. Since S = O ( d ) ,  equation (5.1) can be interpreted, 
dividing through by E ,  as 

where S(0) = A'&, and A' and B' are constants. The linear relationship is lost 
when shock dissipation is no longer a major effect. As the piston amplitude E 

decreases, the point at  which the curves bifurcate moves towards the origin, so 
that the linear relation holds for a smaller range of the impedance. 

S(i) - S(0) = iB', 

The results in this paper were obtained in the course of research sponsored 
in part by the U.S. Army under Contract No. DAAD05-71-C-0389 and 
monitored by the Ballistics Research Laboratories, Aberdeen Proving 
Ground, Md. and in part by the Air Force Office of Scientific Research under 
Grant No. AFOSR-71-2107. 
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Appendix 
Here we prove two results used in 5 3. 
(i) A sufficient condition for the existence of a continuous periodic solution 

of (3.15), for all 8, is that 
p2 > max [ - 4 v H ' ( ~ ) ] .  (A 1) 

T 

(ii) Given p ~ ( O , p ~ ) ,  BE(&,&+) and F defined by (3.19), there exists an 

(A 2) 

Proof of (i). Using the notation of 3 we must show that when (A 1) holds the 
separatices 2: and 2; pass through the node B,, i.e. Za(6,) = Zi(8,) = 0. We 
shall prove the result for 2;; the argument for 2.7, is similar. 

First, since the curve G(q)/,u is the isocline Z'(q) = 0 and Z(7) + O+ yields the 
isocline Z'(v]+-tm, for 8, < 7 < 01, the separatrix Z,+ is continuous and 
differentiable in (O0, 6,) and satisfies 

T s  E (72, To) such that 6 
jO>(s) as = -. b 

0 < Z$(r)  d max [G(T)/PI. 
7 

In particular 2$(6,) 3 0. We show that Z$(O,) = 0 by bounding Z,+(T) above by 
a function Y(7)  which has the properties Y ( y )  > 0 for 8, < 7 < 8, and Y(8,) = 0. 
Such a curve bounds Z,+ above if dZJ/dy < Y'(v),  for all 'y1~[[8,,Ol], whenever 
2; = Y .  The curve Y(q)  = 2G(q)/p has these properties whenever (A 1) holds. 
For when Z,+ = Y ,  

dZ,+ -- -- c-pY =- -p<--  2H'(T) - y', 
dy VY 2V P 

which holds whenever condition (A 1) does. Hence since Y(8,) = 0, Zi(8,) = 0. 
Proof of (ii), Defining 

we wish to show that, for a given 6, there is a value of ys E (a2, vo) such that 
y(q,) = S/b,  where Oo < q2 < 8, < qo < O,, and Z$(qo) = Z,(q,) = 0. We first note 
that, for a given 6, y is a continuous function of ys. Since 2; is continuous in 
(Oo,To), integration of (3.15) yields 

Then consider ~ ( 7 , )  = ]::2:(8) ds +/?>;(s) ds 

Thus, since Z;(T) 2 G(r ) /p  for 8, < 7 < 6,, 

S 
b' 
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Similarly ~ ( 7 , )  6 6/b. Therefore by the continuity of y, there is an rs E (7,) yo) such 
that 
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